El tiempo, la física clásica y la moderna

El tiempo no es más que una sucesión de eventos y cambios.

La dirección del tiempo está definida como positiva hacia un nivel de entropía en aumento. Esto significa que nuestro universo se vuelve más entrópico u desordenado, y si los sucesos ocurren para tal fin, deducimos que el tiempo está transcurriendo en su sentido natural. Por ejemplo si hacemos estallar un edificio, lo más probable es que nos quede un montón de runas y restos irregulares del mismo. Esta sería la evolución lógica (entrópica) del tiempo. Por otro lado, si colocamos explosivos en un montón de runas y escombros, es altamente improbable que de la explosión resulte un edificio.

entropy1

El ejemplo anterior es ampliamente usado cuando se habla del tiempo, y se explica la evolución de un sistema termodinámico. Realmente la segunda opción podría ocurrir, pero es infinitamente improbable, tanto que se da por directamente inconcebible.

Ahora que hemos definido una dirección hacia la que transcurre el tiempo, podemos empezar a contemplar otras propiedades del mismo. La más obvia es, la velocidad a la que transcurre. Es obvio que podemos afirmar que el tiempo transcurre a razón de 1:1, o lo que es lo mismo, transcurre un segundo cada segundo, una hora cada hora, etc… Podemos basarnos en la relatividad, tanto especial como general, expuesta por Albert Einstein, para imaginar situaciones en el que el tiempo transcurriría a distinta “velocidad”, respecto a un supuesto tiempo cero que sería el de la Tierra.

La relatividad general (normalmente abreviada como GR,  inglés general relativity) pretende explicar qué le ocurre al espacio-tiempo cuando hay gravedades muy elevadas. Por otro lado la relatividad especial trabaja con velocidades muy elevadas, cercanas a la de la luz. Parece obvio que hay un patrón en la relatividad de A. Einstein, y así es. Pero bien existe una mecánica clásica o newtoniana, que nos permite trabajar con velocidades, tiempo, gravedad, etc… Puede surgirle la duda al lector, de qué diferencia hay entre los postulados de Newton y los de Einstein, y precisamente hemos explicado ya la esencia: las cantidades.

Las leyes de Newton son leyes, y se aplican como tales, pero desde el estudio de Einstein se ha visto que las leyes de Sir Isaac Newton eran una aproximación. Una aproximación que funciona perfectamente para velocidades lejanas a la velocidad de la luz (300.000 km/s) y con gravedades relativamente pequeñas. Sin embargo, dichas leyes de Newton pierden la precisión cuando tocamos estas condiciones mencionadas. Realmente las de Einstein son aplicables siempre, pero se suelen relegar en dichos casos especiales, ya que las de Newton son suficientemente precisas y lo que es más importante, más sencillas de desarrollar (matemáticamente).

La mecánica clásica también pierde su validez, no solo en velocidades y gravedades muy elevadas, sino a escalas muy pequeñas, del orden del núcleo atómico. De eso se desarrolla la mecánica cuántica, que junto a la relatividad (y alguna otra disciplina), forman parte de la llamada física moderna, en contraposición a la clásica.

012btime2btravel2bmachine

No entraremos en detalles sobre la posibilidad de viajes en el tiempo, ya que esto nos gustaría dejarlo para otra entrada, pero si avanzar que los viajes hacia el futuro a más velocidad que la actual, son perfectamente posibles (como comentamos en una entrada anterior, sobre relatividad especial). Hay más controversia y quizá poca unanimidad entre la comunidad de física sobre los viajes hacia el pasado. La existencia de diversas paradojas y la quizá probable violación de la segunda ley de la termodinámica (el hecho de que aumente la entropía) son condiciones que pesan mucho a la hora de tomar semejante idea como posible. Sentamos así la base para una entrada destinada a ver con menos ficción los viajes en el tiempo, con menos ficción que en la ciencia ficción y con más ciencia, por supuesto.

¡Entra y descubre-lo!

Anuncios

2 comments

  1. Hola Leire

    Comparto al cien por cien tu opinión, es un término que tiene unas implicaciones inimaginables. Define la inevitable muerte del universo, una vez se agoten todas las fuentes de energía. Afortunadamente las enanas blancas, queforman más del 90% de las estrellas del universo, y es la etapa final que adoptan la mayoría de las estrellas, pueden brillar durante quintillones de años (diez elevado a treinta años, o lo que es lo mismo, un uno y treinta ceros), cantidad de tiempo totalmente inimaginable y que vuelve insignificante la edad actual del universo.

    Te recomiendo, si te gusta la ciencia ficción y no lo conoces, que leas un relato de Isaac Asimov que tiene una estrecha relación con la entropía, que se llama “La última pregunta”. Tiene un tamaño de unas veinte páginas, y estoy convencido de que lo disfrutarías.

    Muchas gracias por comentar!

    Me gusta

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.